技术分析
技术分析
- 钻井液堵漏材料研究及应用现状(第一部分)
- 钻井液堵漏材料研究及应用现状(第二部分)
- 钻井液堵漏材料研究及应用现状(第三部分)
- 双碳背景下二氧化碳输送管道智能化技术应用及探索(第一部分)
- 双碳背景下二氧化碳输送管道智能化技术应用及探索(第二部分)
- 双碳背景下二氧化碳输送管道智能化技术应用及探索(第三部分)
- 扶余油田外围区块生物胶降黏压裂技术试验(第一部分)
- 扶余油田外围区块生物胶降黏压裂技术试验(第二部分)
- 减阻剂在原油管道输送过程中的应用
- 基于深度学习的管道漏磁异常数据识别方法(第一部分)
- 基于深度学习的管道漏磁异常数据识别方法(第二部分)
- 基于深度学习的管道漏磁异常数据识别方法(第三部分)
- 油气管道泄漏应急处置关键技术及装备研究(第一部分)
- 油气管道泄漏应急处置关键技术及装备研究(第二部分)
- 非常规储层整体压裂智能优化(第一部分)
- 非常规储层整体压裂智能优化(第二部分)
- 非常规储层整体压裂智能优化(第三部分)
- 行业技术动态,二氧化碳干法压裂
- 塔里木山前盐底恶性漏失沉降堵漏技术(第一部分)
- 塔里木山前盐底恶性漏失沉降堵漏技术(第二部分)
- 塔里木山前盐底恶性漏失沉降堵漏技术(第三部分)
- 水平管稠油掺气减阻模拟实验(第一部分)
- 水平管稠油掺气减阻模拟实验(第二部分)
- 凝点在石油管道输送中的应用
- 管道减阻剂在原油管道运输中的应用
- 深层超深层钻井液技术研究进展与展望(第一部分)
- 深层超深层钻井液技术研究进展与展望(第二部分)
- 深层超深层钻井液技术研究进展与展望(第三部分)
- 深层超深层钻井液技术研究进展与展望(第四部分)
- 改性玄武岩纤维对油井水泥力学性能的影响(第一部分)
- 改性玄武岩纤维对油井水泥力学性能的影响(第二部分)
- 改性玄武岩纤维对油井水泥力学性能的影响(第三部分)
- 中国石油陆相页岩油钻井技术现状与发展建议 (第一部分)
- 中国石油陆相页岩油钻井技术现状与发展建议(第二部分)
- 中国石油陆相页岩油钻井技术现状与发展建议(第三部分)
- 中国石油陆相页岩油钻井技术现状与发展建议(第四部分)
- 固井水泥浆用两性离子型聚羧酸分散剂的合成及性能评价 (第一部分)
- 固井水泥浆用两性离子型聚羧酸分散剂的合成及性能评价 (第二部分)
- 固井水泥浆用两性离子型聚羧酸分散剂的合成及性能评价(第三部分)
- 新型温度响应型蠕虫状胶束堵漏剂合成与评价(第一部分)
- 新型温度响应型蠕虫状胶束堵漏剂合成与评价(第二部分)
- 化工管道运输技术发展现状与展望(第一部分)
- 化工管道运输技术发展现状与展望(第二部分)
- 丙烯酰胺/甲基丙烯酰氧乙基二甲基丙磺酸铵共聚物的合成及其性能
- 管道流量计量技术挑战与展望(第一部分)
- 管道流量计量技术挑战与展望(第二部分)
- 管道流量计量技术挑战与展望(第三部分)
- 海洋软管应用技术与展望(第一部分)
- 海洋软管应用技术与展望(第一部分)
- 海洋软管应用技术与展望(第二部分)
- 海洋软管应用技术与展望(第四部分)
- 基于蒙脱石修饰的深层页岩封堵剂制备及性能研究(第一部分)
- 基于蒙脱石修饰的深层页岩封堵剂制备及性能研究(第二部分)
- 两性离子聚合物降滤失剂的合成及评价 (第一部分)
- 两性离子聚合物降滤失剂的合成及评价 (第二部分)
- 减阻剂在高风险管道上的应用
- 分子模拟技术在油田用丙烯酰胺聚合物中的应用进展(第一部分)
- 分子模拟技术在油田用丙烯酰胺聚合物中的应用进展(第二部分)
- 非均相体系在微通道中的封堵性能研究(第一部分)
- 非均相体系在微通道中的封堵性能研究 (第二部分)
- 高含水油田剩余油研究方法、分布特征与发展趋势(第一部分)
- 高含水油田剩余油研究方法、分布特征与发展趋势(第二部分)
- 高含水油田剩余油研究方法、分布特征与发展趋势(第三部分)
- 能源安全战略下中国管道输送技术发展与展望(第一部分)
- 能源安全战略下中国管道输送技术发展与展望(第二部分)
- 能源安全战略下中国管道输送技术发展与展望(第三部分)
- 超临界水对重油改质中多环芳烃生成与转化影响的研究进展(第一部分)
- 超临界水对重油改质中多环芳烃生成与转化影响的研究进展(第二部分)
- 耐高温两性离子型油井水泥缓凝剂的合成及其缓凝机理研究(第一部分)
- 耐高温两性离子型油井水泥缓凝剂的合成及其缓凝机理研究(第二部分)
- 稠油水环输送管道再启动压降特性分析 (第一部分)
- 稠油水环输送管道再启动压降特性分析 (第二部分)
- 稠油水环输送管道再启动压降特性分析 (第三部分)
- 石油钻井行业的技术新动态
- 防气窜固井水泥浆体系研究
- 油井水泥大温差缓凝剂的合成及性能研究(第一部分)
- 油井水泥大温差缓凝剂的合成及性能研究(第二部分)
- 智能油田关键技术研究现状与发展趋势 (第一部分)
- 智能油田关键技术研究现状与发展趋势 (第二部分)
- 智能油田关键技术研究现状与发展趋势 (第三部分)
- 石油钻井行业技术新动态
- 石油钻井行业技术新动态
- 钻井过程中井漏特征精细识别方法研究与应用(第一部分)
- 钻井过程中井漏特征精细识别方法研究与应用(第二部分)
- 非常规油气固井材料发展现状及趋势浅析(第一部分)
- 非常规油气固井材料发展现状及趋势浅析(第二部分)
- 石油钻井行业技术动态
- 国际石油2023年度十大科技进展回顾
- 页岩气小井眼水平井纳米增韧水泥浆固井技术(第一部分)
- 页岩气小井眼水平井纳米增韧水泥浆固井技术(第二部分)
- 新型固井冲洗液评价装置适用性分析 (第一部分)
- 新型固井冲洗液评价装置适用性分析(第二部分)
- 吉木萨尔页岩油井水泥环性能评价(第一部分)
- 吉木萨尔页岩油井水泥环性能评价(第二部分)
- 构建多维度管道巡防体系管控高后果区风险
- 管道工程建设质量问题探究
- 纳米流体提高原油采收率研究和应用进展(第三部分)
- 纳米流体提高原油采收率研究和应用进展(第一部分)
- 纳米流体提高原油采收率研究和应用进展(第二部分)
- 纳米流体提高原油采收率研究和应用进展(第四部分)
- 基于页岩油水两相渗流特性的油井产能模拟研究
- 页岩油水平井压裂后变形套管液压整形技术
- 中深层稠油化学降黏技术研究进展(第一部分)
- 中深层稠油化学降黏技术研究进展(第二部分)
- 中深层稠油化学降黏技术研究进展(第三部分)
- 中深层稠油化学降黏技术研究进展(第四部分)
- 陆相页岩油气水平井穿层体积压裂技术
- 超支化聚乙烯新材料的研究进展(第一部分)
- 超支化聚乙烯新材料的研究进展(第二部分)
- 纤维素纳米材料在油气行业的研究现状与前景展望-孙金声院士团队
- 国内外深井超深井钻井液技术现状及发展趋势(第一部分)
- 国内外深井超深井钻井液技术现状及发展趋势(第二部分)
- 动态压力固井用疏水缔合聚合物防窜剂的合成与性能(第一部分)
- 动态压力固井用疏水缔合聚合物防窜剂的合成与性能(第二部分)
- 聚合物降滤失剂PAAAA的合成及其性能评价(第一部分)
- 聚合物降滤失剂PAAAA的合成及其性能评价(第二部分)
- 神奇的湍流减阻效应-加点高聚物就能让流体减阻
- 油井用复合低温早强剂的制备与性能研究(第一部分)
- 油井用复合低温早强剂的制备与性能研究(第二部分)
- 阴离子型丁苯胶乳粉的合成及其在油井水泥中的应用(第一部分)
- 阴离子型丁苯胶乳粉的合成及其在油井水泥中的应用(第二部分)
- 水溶性疏水缔合聚合物-膨润土纳米复合材料的研究(第一部分)
- 水溶性疏水缔合聚合物-膨润土纳米复合材料的研究(第二部分)
- 南海深水油气开采风险识别及安全控制技术
- 中国陆上油气田生产智能化现状及展望(第一部分)
- 中国陆上油气田生产智能化现状及展望(第二部分)
- 中国陆上油气田生产智能化现状及展望(第三部分)
- 石油钻井堵漏-施工原理-施工方法
- 钻井工程血液-钻完井液技术的发展现状与趋势(第一部分)
- 钻井工程血液-钻完井液技术的发展现状与趋势(第二部分)
- 钻井工程血液-钻完井液技术的发展现状与趋势(第三部分)
- 详述固井前置液
- 国内新型油井水泥分散剂的研究进展
- 缓凝剂的作用机理及缓凝效果
- 油田工业当中消泡剂的应用
- 微交联聚合物降滤失剂的合成与性能 (第一部分)
- 微交联聚合物降滤失剂的合成与性能(第二部分)
- 抗温抗盐水基钻井液降滤失剂研究进展(第一部分)
- 抗温抗盐水基钻井液降滤失剂研究进展(第二部分)
- 抗温抗盐水基钻井液降滤失剂研究进展(第三部分)
- 超高温高密度钻井液
- 浅析减阻剂在输油管道运行中的节能降耗和增输效益
- 井控技术研究进展与展望(第三部分)
- 井控技术研究进展与展望(第二部分)
- 井控技术研究进展与展望(第一部分)
- 耐温型聚丙烯酰胺减阻剂研究与应用现状(第一部分)
- 耐温型聚丙烯酰胺减阻剂研究与应用现状(第二部分)
- 抗高温钻井液降滤失剂的合成及机理研究(第一部分)
- 抗高温钻井液降滤失剂的合成及机理研究(第二部分)
- 抗高温钻井液降滤失剂的合成及机理研究(第三部分)
- 油气管道技术发展现状与展望
- 可降解微交联减阻剂的开发及应用(第一部分)
- 石油管道输送用高效减阻剂超高分子量聚1-辛烯的合成及其结构性能(第三部分)
- 石油管道输送用高效减阻剂超高分子量聚1-辛烯的合成及其结构性能(第二部分)
- 石油管道输送用高效减阻剂超高分子量聚1-辛烯的合成及其结构性能(第一部分)
- 可降解微交联减阻剂的开发及应用(第二部分)
- 泡沫水泥浆固井技术
- 泡沫水泥浆固井技术
- 深井、超深井固井关键工具(三)
- 深井、超深井固井关键技术进展及实践 (一)
- 深井、超深井固井特色水泥浆体系(二)
- 石油支撑剂是什么
- 油田污水处理技术现状及发展趋势
- 液化石油气(LPG)压裂技术及其应用前景
- 液化石油气(LPG)压裂技术及其应用前景
- 乳化原油破乳机理的研究
- 乳化原油破乳机理的研究
- 油田开发过程中厚油层剩余油分布与挖潜技术研究
- 一种低伤害压裂液的性能评价与现场应用
- 油基泥浆含油钻屑处理技术研究
- 钻井完井过程油气储层伤害机理与控制措施
- 浅谈PX 项目与我国石油加工业的可持续发展
- 油气并举在石油开采中的作业分析
- 斯伦贝谢如何强化技术创新
- 页岩油深斜井技术新发展
- 油田注水用杀菌剂在我国的应用及发展
- 油田开发设计方法和老油田开发现状
- 引入新井身结构提高SAGD性能
- 关于油气勘探新技术与应用分析
- 海洋油气钻探及其相关应用技术的发展与展望
- 储层压裂新技术: 液化石油气无水压裂
- “大数据” 助力石油行业更高效
- 一种速溶无残渣纤维素压裂液
- 油田污水回用技术促进企业清洁生产
- 历史悠久且最有效的堵漏剂产品:Diaseal M
- 贝克休斯ClearStar压裂液体系
- EOR三大技术现状与展望
- 页岩油气开发环保新技术 移动式膜分离技术提供高容量水循环利用
- 油田化学剂在油田污水处理中的应用研究
- 三次采油技术进展
- 中东钻井技术新进展
- 页岩气开采新工艺:无水压裂
- 以聚合物为载体的三次采油技术研究
- 深水钻井液关键外加剂优选评价方法
- 合成基钻井液技术应用
井漏是当下钻井过程中常见和相对难以治理的一种井下复杂事故,已成为影响钻井进度的主要因素之一,甚至会引发程度不等的安全事故。本文通过综合分析漏失成因类型和机制、国内外新型堵漏材料在不同环境和条件下的表现以及它们与井筒和地层等因素之间的相互作用,阐述了水泥堵漏材料、交联体系堵漏材料、金属类堵漏材料、颗粒LCMs堵漏材料、纤维类堵漏材料以及可固化和LCMs混合体堵漏材料的特点和堵漏机理,总结了不同种类的堵漏材料在不同地层漏失中的应用效果及优缺点。结果表明:结合堵漏成功率和经济实用因素,在处理高渗透孔隙型地层漏失中选择水泥堵漏材料,堵漏成功率达到91%;在处理溶洞型地层漏失中选择可固化和LCMs混合堵漏材料,堵漏成功率达到89%;在处理天然裂缝型地层漏失中选择纤维类堵漏材料,堵漏成功率达到75%;在处理诱导裂缝型地层漏失中选择颗粒LCMs堵漏材料,堵漏成功率达到92%。研究成果对提升钻井液堵漏效果、推动堵漏技术的发展具有重要的理论和技术借鉴意义。
井漏是制约安全高效钻井的重要工程问题之一。昂贵的钻井液漏入地层以及重新建立循环所花费的大量非生产时间会大幅度增加钻井的成本。如果井漏不加以治理还可能引起井控、井眼净化不良、阻塞和卡钻等复杂事故的发生。在钻井设计阶段选择合理的预防措施可以显著减少井漏的问题,如果通过预防措施无法避免漏失的发生,那么就需要有效措施来控制井漏。针对不同类型的钻井液漏失问题,国内外的学者已研发出一系列堵漏材料。根据堵漏机理大体上可以划分为可固化堵漏材料(如水泥、聚合物凝胶等)、常规化堵漏材料(Lost Circulation Materials,简称LCMs)(如颗粒、矿物纤维等)以及可固化和LCMs混合体堵漏材料(如凝胶和LCMs复合体等)三大类。尽管上述堵漏材料的研发为应对钻井液漏失提供了有效的措施,但对于复杂的地层漏失仍存在一定的盲目性和不可预见性。现行的堵漏手段缺乏科学性和针对性,导致同一种堵漏材料在不同地层显现出堵漏效果差异大、抗温性能不稳定、承压能力和驻留能力不足等问题,这些问题导致井筒堵漏成功率不高,堵漏技术难以推广,因此井漏事故仍未能有效控制和消除。
针对目前复杂地层漏失的堵漏难题,包括一次性堵漏成功率低和堵漏技术难以复制的问题,本文通过综合分析近十年来国内外文献,详细阐述了可固化堵漏材料、常规化堵漏材料(LCMs)以及可固化和LCMs混合体堵漏材料的特点和堵漏机理,深入探讨了不同堵漏材料在面对不同地层漏失时的应用效果,对提升钻井液堵漏效果以及促进堵漏技术的进一步发展具有重要的理论和技术启示。
1.钻井液漏失机理及诊断
研究漏失机理有助于深入了解井漏产生的原因,从而为选择合适的堵漏剂提供指导。不同类型的堵漏剂在成分、颗粒大小、流动性等方面存在差异,因此对钻井液漏失机理的分析有助于精准选择合适的堵漏剂,提高封堵效果。Nelson等根据钻井液漏失程度将漏失分为如下类型:渗漏(漏失速率小于1.6m3/h)、部分漏失(漏失速率在1.6-16 m3/h之间)、严重漏失(漏失速率超过16m3/h)和失返性漏失(没有钻井液返回井口)。仅根据钻井液漏失程度来分类相对简单,没有考虑到漏失机理或者漏失发生条件,不同的漏失机理可能在不同的地层中发挥的作用不同,因此可根据漏失通道的类型,将漏失归为如下类型:高渗透性基质型漏失、溶洞型漏失、天然裂缝型漏失和钻井诱导裂缝型漏失,诊断方法见表1。
1.1 高渗透性基质型漏失
高渗透性基质型漏失是指在钻井作业中,井下地层中存在高度渗透性的基质,使得钻井液在这些基质中渗透、渗漏,最终导致钻井液流失到地层中。这种漏失通常发生在地层中存在高度渗透性岩石或土壤中,钻井液相对容易进入岩石或土壤的孔隙和裂缝,易导致高渗透性基质型漏失的发生。该漏失特征是起初漏失非常缓慢,但随着后续钻井的钻进,导致更多的高渗透性岩石与钻井液接触,钻井液漏失的速率则会逐渐增大。随着时间的推移,钻井液在井壁上形成滤饼,导致漏失速率逐渐减小,但漏失并不会完全停止,直到钻到高渗透性地层为止,漏失特征如图1所示。在破碎地层中,钻井液漏失也被视为高渗透性基质型漏失,例如当钻遇盐膏层时会出现这种情况。
1.2 溶洞型漏失
溶洞型漏失是指在钻井过程中,钻井液通过地层中的洞穴或溶隧道等溶洞型结构时漏失到地层中。当钻头钻遇溶洞时,漏失就会立即发生,特别是当几个溶洞连通时,漏失的钻井液体积可能非常大,甚至可能造成失返性漏失(没有钻井液返回井口),从而导致井眼卡钻、坍塌、井喷失控等事故。其钻井液漏失特征如图2所示。
1.3 天然裂缝型漏失
天然裂缝引起的钻井液漏失是指在钻井过程中,由于地层中存在天然裂缝或裂隙,导致钻井液从井筒中渗漏到地层中。该类型的漏失通常发生在地下岩层中存在天然裂缝、裂隙或断层的区域,约76%的漏失是由天然裂缝造成的。天然裂缝是否会导致钻井液漏失取决于以下3个因素:井筒液柱压力大小、裂缝水力学宽度和钻井液流变性。对于天然裂缝型漏失而言,两个主要的控制因素分别是裂缝水力学宽度Wh和井底压力(BHP),而井底压力又是其中的关键因素。基于这两个因素对天然裂缝型漏失情况的进一步说明,见表2。
天然裂缝需要足够宽且具有足够的渗透性,才会引起天然裂缝型漏失,但不是所有的天然裂缝都能引起钻井液漏失,因为大部分的天然裂缝是闭合的或被矿物填充的,裂缝变得很窄或不可被渗透。如果天然裂缝互相连通,那么引起的漏失则是严重漏失或失返性漏失。Sanfillippo等通过对现场的数据进行分析后认为,钻井液漏失事件后期可近似表示为
式中
Vcum—从漏失开始直到时间t时漏失到裂缝中的钻井液累计体积,L;
V0—瞬时漏失量,L/min;
t—漏失时长,min;
C—经验系数。
钻井液漏失速率与时间曲线表现出漏失速率突然增大和逐渐减小,具体漏失特征如图3所示。