技术分析
技术分析
- 固井水泥浆用两性离子型聚羧酸分散剂的合成及性能评价 (第一部分)
- 固井水泥浆用两性离子型聚羧酸分散剂的合成及性能评价 (第二部分)
- 固井水泥浆用两性离子型聚羧酸分散剂的合成及性能评价(第三部分)
- 新型温度响应型蠕虫状胶束堵漏剂合成与评价(第一部分)
- 新型温度响应型蠕虫状胶束堵漏剂合成与评价(第二部分)
- 化工管道运输技术发展现状与展望(第一部分)
- 化工管道运输技术发展现状与展望(第二部分)
- 丙烯酰胺/甲基丙烯酰氧乙基二甲基丙磺酸铵共聚物的合成及其性能
- 管道流量计量技术挑战与展望(第一部分)
- 管道流量计量技术挑战与展望(第二部分)
- 管道流量计量技术挑战与展望(第三部分)
- 海洋软管应用技术与展望(第一部分)
- 海洋软管应用技术与展望(第一部分)
- 海洋软管应用技术与展望(第二部分)
- 海洋软管应用技术与展望(第四部分)
- 基于蒙脱石修饰的深层页岩封堵剂制备及性能研究(第一部分)
- 基于蒙脱石修饰的深层页岩封堵剂制备及性能研究(第二部分)
- 两性离子聚合物降滤失剂的合成及评价 (第一部分)
- 两性离子聚合物降滤失剂的合成及评价 (第二部分)
- 减阻剂在高风险管道上的应用
- 分子模拟技术在油田用丙烯酰胺聚合物中的应用进展(第一部分)
- 分子模拟技术在油田用丙烯酰胺聚合物中的应用进展(第二部分)
- 非均相体系在微通道中的封堵性能研究(第一部分)
- 非均相体系在微通道中的封堵性能研究 (第二部分)
- 高含水油田剩余油研究方法、分布特征与发展趋势(第一部分)
- 高含水油田剩余油研究方法、分布特征与发展趋势(第二部分)
- 高含水油田剩余油研究方法、分布特征与发展趋势(第三部分)
- 能源安全战略下中国管道输送技术发展与展望(第一部分)
- 能源安全战略下中国管道输送技术发展与展望(第二部分)
- 能源安全战略下中国管道输送技术发展与展望(第三部分)
- 超临界水对重油改质中多环芳烃生成与转化影响的研究进展(第一部分)
- 超临界水对重油改质中多环芳烃生成与转化影响的研究进展(第二部分)
- 耐高温两性离子型油井水泥缓凝剂的合成及其缓凝机理研究(第一部分)
- 耐高温两性离子型油井水泥缓凝剂的合成及其缓凝机理研究(第二部分)
- 稠油水环输送管道再启动压降特性分析 (第一部分)
- 稠油水环输送管道再启动压降特性分析 (第二部分)
- 稠油水环输送管道再启动压降特性分析 (第三部分)
- 石油钻井行业的技术新动态
- 防气窜固井水泥浆体系研究
- 油井水泥大温差缓凝剂的合成及性能研究(第一部分)
- 油井水泥大温差缓凝剂的合成及性能研究(第二部分)
- 智能油田关键技术研究现状与发展趋势 (第一部分)
- 智能油田关键技术研究现状与发展趋势 (第二部分)
- 智能油田关键技术研究现状与发展趋势 (第三部分)
- 石油钻井行业技术新动态
- 石油钻井行业技术新动态
- 钻井过程中井漏特征精细识别方法研究与应用(第一部分)
- 钻井过程中井漏特征精细识别方法研究与应用(第二部分)
- 非常规油气固井材料发展现状及趋势浅析(第一部分)
- 非常规油气固井材料发展现状及趋势浅析(第二部分)
- 石油钻井行业技术动态
- 国际石油2023年度十大科技进展回顾
- 页岩气小井眼水平井纳米增韧水泥浆固井技术(第一部分)
- 页岩气小井眼水平井纳米增韧水泥浆固井技术(第二部分)
- 新型固井冲洗液评价装置适用性分析 (第一部分)
- 新型固井冲洗液评价装置适用性分析(第二部分)
- 吉木萨尔页岩油井水泥环性能评价(第一部分)
- 吉木萨尔页岩油井水泥环性能评价(第二部分)
- 构建多维度管道巡防体系管控高后果区风险
- 管道工程建设质量问题探究
- 纳米流体提高原油采收率研究和应用进展(第三部分)
- 纳米流体提高原油采收率研究和应用进展(第一部分)
- 纳米流体提高原油采收率研究和应用进展(第二部分)
- 纳米流体提高原油采收率研究和应用进展(第四部分)
- 基于页岩油水两相渗流特性的油井产能模拟研究
- 页岩油水平井压裂后变形套管液压整形技术
- 中深层稠油化学降黏技术研究进展(第一部分)
- 中深层稠油化学降黏技术研究进展(第二部分)
- 中深层稠油化学降黏技术研究进展(第三部分)
- 中深层稠油化学降黏技术研究进展(第四部分)
- 陆相页岩油气水平井穿层体积压裂技术
- 超支化聚乙烯新材料的研究进展(第一部分)
- 超支化聚乙烯新材料的研究进展(第二部分)
- 纤维素纳米材料在油气行业的研究现状与前景展望-孙金声院士团队
- 国内外深井超深井钻井液技术现状及发展趋势(第一部分)
- 国内外深井超深井钻井液技术现状及发展趋势(第二部分)
- 动态压力固井用疏水缔合聚合物防窜剂的合成与性能(第一部分)
- 动态压力固井用疏水缔合聚合物防窜剂的合成与性能(第二部分)
- 聚合物降滤失剂PAAAA的合成及其性能评价(第一部分)
- 聚合物降滤失剂PAAAA的合成及其性能评价(第二部分)
- 神奇的湍流减阻效应-加点高聚物就能让流体减阻
- 油井用复合低温早强剂的制备与性能研究(第一部分)
- 油井用复合低温早强剂的制备与性能研究(第二部分)
- 阴离子型丁苯胶乳粉的合成及其在油井水泥中的应用(第一部分)
- 阴离子型丁苯胶乳粉的合成及其在油井水泥中的应用(第二部分)
- 水溶性疏水缔合聚合物-膨润土纳米复合材料的研究(第一部分)
- 水溶性疏水缔合聚合物-膨润土纳米复合材料的研究(第二部分)
- 南海深水油气开采风险识别及安全控制技术
- 中国陆上油气田生产智能化现状及展望(第一部分)
- 中国陆上油气田生产智能化现状及展望(第二部分)
- 中国陆上油气田生产智能化现状及展望(第三部分)
- 石油钻井堵漏-施工原理-施工方法
- 钻井工程血液-钻完井液技术的发展现状与趋势(第一部分)
- 钻井工程血液-钻完井液技术的发展现状与趋势(第二部分)
- 钻井工程血液-钻完井液技术的发展现状与趋势(第三部分)
- 详述固井前置液
- 国内新型油井水泥分散剂的研究进展
- 缓凝剂的作用机理及缓凝效果
- 油田工业当中消泡剂的应用
- 微交联聚合物降滤失剂的合成与性能 (第一部分)
- 微交联聚合物降滤失剂的合成与性能(第二部分)
- 抗温抗盐水基钻井液降滤失剂研究进展(第一部分)
- 抗温抗盐水基钻井液降滤失剂研究进展(第二部分)
- 抗温抗盐水基钻井液降滤失剂研究进展(第三部分)
- 超高温高密度钻井液
- 浅析减阻剂在输油管道运行中的节能降耗和增输效益
- 井控技术研究进展与展望(第三部分)
- 井控技术研究进展与展望(第二部分)
- 井控技术研究进展与展望(第一部分)
- 耐温型聚丙烯酰胺减阻剂研究与应用现状(第一部分)
- 耐温型聚丙烯酰胺减阻剂研究与应用现状(第二部分)
- 抗高温钻井液降滤失剂的合成及机理研究(第一部分)
- 抗高温钻井液降滤失剂的合成及机理研究(第二部分)
- 抗高温钻井液降滤失剂的合成及机理研究(第三部分)
- 油气管道技术发展现状与展望
- 可降解微交联减阻剂的开发及应用(第一部分)
- 石油管道输送用高效减阻剂超高分子量聚1-辛烯的合成及其结构性能(第三部分)
- 石油管道输送用高效减阻剂超高分子量聚1-辛烯的合成及其结构性能(第二部分)
- 石油管道输送用高效减阻剂超高分子量聚1-辛烯的合成及其结构性能(第一部分)
- 可降解微交联减阻剂的开发及应用(第二部分)
- 泡沫水泥浆固井技术
- 泡沫水泥浆固井技术
- 深井、超深井固井关键工具(三)
- 深井、超深井固井关键技术进展及实践 (一)
- 深井、超深井固井特色水泥浆体系(二)
- 石油支撑剂是什么
- 油田污水处理技术现状及发展趋势
- 液化石油气(LPG)压裂技术及其应用前景
- 液化石油气(LPG)压裂技术及其应用前景
- 乳化原油破乳机理的研究
- 乳化原油破乳机理的研究
- 油田开发过程中厚油层剩余油分布与挖潜技术研究
- 一种低伤害压裂液的性能评价与现场应用
- 油基泥浆含油钻屑处理技术研究
- 钻井完井过程油气储层伤害机理与控制措施
- 浅谈PX 项目与我国石油加工业的可持续发展
- 油气并举在石油开采中的作业分析
- 斯伦贝谢如何强化技术创新
- 页岩油深斜井技术新发展
- 油田注水用杀菌剂在我国的应用及发展
- 油田开发设计方法和老油田开发现状
- 引入新井身结构提高SAGD性能
- 关于油气勘探新技术与应用分析
- 海洋油气钻探及其相关应用技术的发展与展望
- 储层压裂新技术: 液化石油气无水压裂
- “大数据” 助力石油行业更高效
- 一种速溶无残渣纤维素压裂液
- 油田污水回用技术促进企业清洁生产
- 历史悠久且最有效的堵漏剂产品:Diaseal M
- 贝克休斯ClearStar压裂液体系
- EOR三大技术现状与展望
- 页岩油气开发环保新技术 移动式膜分离技术提供高容量水循环利用
- 油田化学剂在油田污水处理中的应用研究
- 三次采油技术进展
- 中东钻井技术新进展
- 页岩气开采新工艺:无水压裂
- 以聚合物为载体的三次采油技术研究
- 深水钻井液关键外加剂优选评价方法
- 合成基钻井液技术应用
现如今,海洋资源特别是海洋油气资源开发利用越来越受到世界各国的重视。目前,海洋油气已经成为世界油气生产增长的主要来源。据不完全统计,全球已发现海洋油气田2000 多个,海洋油气储量占全部油气储量的30-40%,海洋油气产量占全部油气产量的30%以上,且探明率在30%左右,尚处于勘探的早期阶段。本文针对海洋油气钻探的相关应用技术,做出综述性总结,并提出未来发展之展望。
2.1 海洋钻探
海洋钻探包括:滨海、海底地质钻探;滨海(近海)石油与天然气钻探;大洋科学考察钻探。
为适应不同水深,海洋钻进设施可分为以下几类:
(1)人工岛、栈桥、珩架式构架———实质上是陆地钻探向浅海的延伸,适应水深5-20m。
(2)底座式固定平台,适应水深20-30m。
(3)自升式钻井船(平台)适应水深20-110m。
(4)半潜式钻井船(平台,高出水面18m),适应水深60-200m,最深达610m。
(5)深海钻井船,适应水深300-6000m,一般为610m 以内。
2.2 海洋油气勘探对钻探平台的要求
与陆地油气钻探相比,海洋油气钻探需要克服海洋环境的影响。海况总会引起钻井船船体运动,且随着风速的变化和海流速度的高低而加剧或减弱。尽可能地提高船体的稳定性,保证钻井船有效作业,减弱船体运动是至关重要的。
在对海上船体运动进行分析之后,发现在钻进船工作或锚定后,有六种运动:纵移,横移,升沉,横摇,纵摇,摇艏。任一船体运动必须考虑船上工作人员所能承受的水平,从而保证人员在特殊环境下安全作业和钻探施工的顺利进行。
船体稳定性是船抗倾覆的性能,它关系到船只的倾斜运动状态,对稳定性的要求如下:
(1)完整稳定性———要求扶正力矩必须顶得住从任何方向吹来的预计风速。
(2)破坏稳定性———在任何主舱间被合理淹没的情况下,船只还能顶得住来自任何方向的一定的风负荷。
(3)动稳定性———用风倾覆力矩这个名词来表示,它是倾斜角的函数。
2.3 海上钻井工程设备的主要结构
陆地上的油气钻探方法与技术在海洋油气钻探中都是适用的。但是,受恶劣的海洋自然地理环境和海水的物理化学性质的影响,许多钻探方法与技术受到了限制。因此,海上钻井工程设备的结构要复杂的多,海上钻井必须使用钻井平台。除与陆上相同的必须的钻井设备结构外,还有部分设备需要根据实际钻探情况做适当的改进与调整。
2.3.1 套管头与套管
水下套管头与陆地钻井的套管头很相似,其作用是:
(1)钻进中必须能支持防喷器组。
(2)注水泥固井时能悬挂套管。
(3)在钻进和开采中必须能将各层套管柱之间予以密封。
为适应海上钻探的需要,浮式钻井的套管挂、套管密封、水泥头与陆地或自升式钻井平台作业并不相同,如:
①下套管时,最后一节接上一只套管挂,并在固井前永久性地悬挂在套管头处,泥浆回经套管挂上的凹槽返回;
②水泥塞一般位于套管头上,用遥控开启;
③套管密封件用遥控法下入安装;
④备有特殊测试器具对套管密封进行遥测。
早年套管柱由海底套管头一直延续到海面,用传统的水泥头即可进行注水作业。现在多使用海下注水泥系统,这一系统的特殊结构使得近海用的水泥头比陆上用的要轻些,并易于掌握。
2.3.2 防喷器
防喷器是为承压状态下关闭井口而设计的。为保持对井的连续控制,使流入井筒里的地层流体也能循环出来,需要采用多种类型的防喷器。同时为了备用,同一类型的防喷器也要有两台或更多的台数。把几台防喷器组装在一起称为防喷器组。
防喷器设计工艺与技术以及陆上使用防喷器的经验,都借用于浮式钻井,但是当防喷器安置在海底时,需要对防喷器、控制系统、钻进工艺、使用方法等方面进行改进。主要变化是:
①防喷器尺寸加大了;
②结构设计需考虑海底的静水压力;
③由于运送管线较长,压力降增高,大型的防喷器比陆上相应的需要更多的液体以操纵防喷器;
④为防止回油管路的压力降,液压液体要往海里排气;
⑤液压液体不能污染海水,具有防腐性、粘度低、润滑性好,并能与高矿化水混合的特性;
⑥防喷器组的布置改变;
⑦长节流管线中的压力降影响井控工艺改变。
2.3.3 隔水管部件
隔水管是钻井船与海底套管头之间的交通连系通道。隔水管的部件包括:隔水管短节;球接头;滑动短节;分流器;过渡管线;浮力轮。在海上油气钻井平台上需要附加许多设备来补偿船体的运动,从而确保隔水管的正常工作。运动补偿的含义是抵偿浮式钻井船的升沉运动,使钻井平台相对于海床保持其不受运动的影响,即在浮式钻井过程中,船受升沉作用的影响,而始终保持钻头压力恒定。进行运动补偿的方式有:被动系统;主动和半主动系统;缓冲短节。
2.3.4 水下设备
海洋钻井的水下设备组成从下而上依次为:井口盘(临时井口盘)———附电视导向绳、声波装置;永久导向架 ———附永久导向绳;套管(组);液压连接器;防喷器(组)———附四只双闸板防喷器、一只环形液压防喷器、压井-放喷阀与水下放喷管线、控制箱、隔水管系导向臂及电视摄像机;液压连接器 ———附球接头、卡箍、压井-放喷管线的过渡线;下球接头;隔水管;伸缩隔水管;隔水管张紧绳;上球接头;分流器;伸缩短节。
这些水下设备的主要功能为:
(1)从井口到钻台构成一个隔绝海水的通道。以供起下各种钻探工具,返回与导出钻井液。
(2)由防喷器、压井-放喷管对海底井口与井内压力实行控制。
(3)由球接头、滑动短节、张紧系统的偏斜和伸缩,以适应钻井船的升沉与摇动。
(4)在井口装置与防喷器组、防喷器组与隔水管系统之间,采用液压连接器,在紧急状况实现钻井船与隔水管系统快速脱开。
2.4 海洋油气钻探技术特点
在海上,由于恶劣的自然环境和海水的物理化学性质的影响,很难进行在陆地上所能采用的地面地质调查法,许多技术方法受到限制,各种勘探方法需转到勘探船、钻井平台上进行,并且测量结果受海水深度和海水性质的影响。正是为适应这些因素,减弱其不良影响,海洋油气钻探技术形成了不同于陆地的特点:
(1)钻井平台使用寿命长,可靠性指标高,主要体现在强度要求高、疲劳寿命要求高、建造工艺要求高、生产管理要求高。
(2)钻井平台为适应不同海域、不同水深、不同方位的作业而呈多样化,各种钻探设备和方法也更为复杂。
(3)海上的钻探在布置探井井位时必须十分慎重,确保最大限度地提高钻探效率,取全、取准第一手资料。
(4)由于海洋油气工程装置所产生的海损事故十分严重,所以对其安全性能要求大大提高,特别是对包括设计与要求、火灾与消防及环保设计等HSE 的贯彻执行更加严格。
总之,海洋油气钻探技术总体呈现为普通技术、新技术和高技术相互吸收融合而形成的多技术结构。
更多相关资讯请关注信昌卓润官方网站:www.zoranoc.com