技术分析
技术分析
- 凝点在石油管道输送中的应用
- 管道减阻剂在原油管道运输中的应用
- 深层超深层钻井液技术研究进展与展望(第一部分)
- 深层超深层钻井液技术研究进展与展望(第二部分)
- 深层超深层钻井液技术研究进展与展望(第三部分)
- 深层超深层钻井液技术研究进展与展望(第四部分)
- 改性玄武岩纤维对油井水泥力学性能的影响(第一部分)
- 改性玄武岩纤维对油井水泥力学性能的影响(第二部分)
- 改性玄武岩纤维对油井水泥力学性能的影响(第三部分)
- 中国石油陆相页岩油钻井技术现状与发展建议 (第一部分)
- 中国石油陆相页岩油钻井技术现状与发展建议(第二部分)
- 中国石油陆相页岩油钻井技术现状与发展建议(第三部分)
- 中国石油陆相页岩油钻井技术现状与发展建议(第四部分)
- 固井水泥浆用两性离子型聚羧酸分散剂的合成及性能评价 (第一部分)
- 固井水泥浆用两性离子型聚羧酸分散剂的合成及性能评价 (第二部分)
- 固井水泥浆用两性离子型聚羧酸分散剂的合成及性能评价(第三部分)
- 新型温度响应型蠕虫状胶束堵漏剂合成与评价(第一部分)
- 新型温度响应型蠕虫状胶束堵漏剂合成与评价(第二部分)
- 化工管道运输技术发展现状与展望(第一部分)
- 化工管道运输技术发展现状与展望(第二部分)
- 丙烯酰胺/甲基丙烯酰氧乙基二甲基丙磺酸铵共聚物的合成及其性能
- 管道流量计量技术挑战与展望(第一部分)
- 管道流量计量技术挑战与展望(第二部分)
- 管道流量计量技术挑战与展望(第三部分)
- 海洋软管应用技术与展望(第一部分)
- 海洋软管应用技术与展望(第一部分)
- 海洋软管应用技术与展望(第二部分)
- 海洋软管应用技术与展望(第四部分)
- 基于蒙脱石修饰的深层页岩封堵剂制备及性能研究(第一部分)
- 基于蒙脱石修饰的深层页岩封堵剂制备及性能研究(第二部分)
- 两性离子聚合物降滤失剂的合成及评价 (第一部分)
- 两性离子聚合物降滤失剂的合成及评价 (第二部分)
- 减阻剂在高风险管道上的应用
- 分子模拟技术在油田用丙烯酰胺聚合物中的应用进展(第一部分)
- 分子模拟技术在油田用丙烯酰胺聚合物中的应用进展(第二部分)
- 非均相体系在微通道中的封堵性能研究(第一部分)
- 非均相体系在微通道中的封堵性能研究 (第二部分)
- 高含水油田剩余油研究方法、分布特征与发展趋势(第一部分)
- 高含水油田剩余油研究方法、分布特征与发展趋势(第二部分)
- 高含水油田剩余油研究方法、分布特征与发展趋势(第三部分)
- 能源安全战略下中国管道输送技术发展与展望(第一部分)
- 能源安全战略下中国管道输送技术发展与展望(第二部分)
- 能源安全战略下中国管道输送技术发展与展望(第三部分)
- 超临界水对重油改质中多环芳烃生成与转化影响的研究进展(第一部分)
- 超临界水对重油改质中多环芳烃生成与转化影响的研究进展(第二部分)
- 耐高温两性离子型油井水泥缓凝剂的合成及其缓凝机理研究(第一部分)
- 耐高温两性离子型油井水泥缓凝剂的合成及其缓凝机理研究(第二部分)
- 稠油水环输送管道再启动压降特性分析 (第一部分)
- 稠油水环输送管道再启动压降特性分析 (第二部分)
- 稠油水环输送管道再启动压降特性分析 (第三部分)
- 石油钻井行业的技术新动态
- 防气窜固井水泥浆体系研究
- 油井水泥大温差缓凝剂的合成及性能研究(第一部分)
- 油井水泥大温差缓凝剂的合成及性能研究(第二部分)
- 智能油田关键技术研究现状与发展趋势 (第一部分)
- 智能油田关键技术研究现状与发展趋势 (第二部分)
- 智能油田关键技术研究现状与发展趋势 (第三部分)
- 石油钻井行业技术新动态
- 石油钻井行业技术新动态
- 钻井过程中井漏特征精细识别方法研究与应用(第一部分)
- 钻井过程中井漏特征精细识别方法研究与应用(第二部分)
- 非常规油气固井材料发展现状及趋势浅析(第一部分)
- 非常规油气固井材料发展现状及趋势浅析(第二部分)
- 石油钻井行业技术动态
- 国际石油2023年度十大科技进展回顾
- 页岩气小井眼水平井纳米增韧水泥浆固井技术(第一部分)
- 页岩气小井眼水平井纳米增韧水泥浆固井技术(第二部分)
- 新型固井冲洗液评价装置适用性分析 (第一部分)
- 新型固井冲洗液评价装置适用性分析(第二部分)
- 吉木萨尔页岩油井水泥环性能评价(第一部分)
- 吉木萨尔页岩油井水泥环性能评价(第二部分)
- 构建多维度管道巡防体系管控高后果区风险
- 管道工程建设质量问题探究
- 纳米流体提高原油采收率研究和应用进展(第三部分)
- 纳米流体提高原油采收率研究和应用进展(第一部分)
- 纳米流体提高原油采收率研究和应用进展(第二部分)
- 纳米流体提高原油采收率研究和应用进展(第四部分)
- 基于页岩油水两相渗流特性的油井产能模拟研究
- 页岩油水平井压裂后变形套管液压整形技术
- 中深层稠油化学降黏技术研究进展(第一部分)
- 中深层稠油化学降黏技术研究进展(第二部分)
- 中深层稠油化学降黏技术研究进展(第三部分)
- 中深层稠油化学降黏技术研究进展(第四部分)
- 陆相页岩油气水平井穿层体积压裂技术
- 超支化聚乙烯新材料的研究进展(第一部分)
- 超支化聚乙烯新材料的研究进展(第二部分)
- 纤维素纳米材料在油气行业的研究现状与前景展望-孙金声院士团队
- 国内外深井超深井钻井液技术现状及发展趋势(第一部分)
- 国内外深井超深井钻井液技术现状及发展趋势(第二部分)
- 动态压力固井用疏水缔合聚合物防窜剂的合成与性能(第一部分)
- 动态压力固井用疏水缔合聚合物防窜剂的合成与性能(第二部分)
- 聚合物降滤失剂PAAAA的合成及其性能评价(第一部分)
- 聚合物降滤失剂PAAAA的合成及其性能评价(第二部分)
- 神奇的湍流减阻效应-加点高聚物就能让流体减阻
- 油井用复合低温早强剂的制备与性能研究(第一部分)
- 油井用复合低温早强剂的制备与性能研究(第二部分)
- 阴离子型丁苯胶乳粉的合成及其在油井水泥中的应用(第一部分)
- 阴离子型丁苯胶乳粉的合成及其在油井水泥中的应用(第二部分)
- 水溶性疏水缔合聚合物-膨润土纳米复合材料的研究(第一部分)
- 水溶性疏水缔合聚合物-膨润土纳米复合材料的研究(第二部分)
- 南海深水油气开采风险识别及安全控制技术
- 中国陆上油气田生产智能化现状及展望(第一部分)
- 中国陆上油气田生产智能化现状及展望(第二部分)
- 中国陆上油气田生产智能化现状及展望(第三部分)
- 石油钻井堵漏-施工原理-施工方法
- 钻井工程血液-钻完井液技术的发展现状与趋势(第一部分)
- 钻井工程血液-钻完井液技术的发展现状与趋势(第二部分)
- 钻井工程血液-钻完井液技术的发展现状与趋势(第三部分)
- 详述固井前置液
- 国内新型油井水泥分散剂的研究进展
- 缓凝剂的作用机理及缓凝效果
- 油田工业当中消泡剂的应用
- 微交联聚合物降滤失剂的合成与性能 (第一部分)
- 微交联聚合物降滤失剂的合成与性能(第二部分)
- 抗温抗盐水基钻井液降滤失剂研究进展(第一部分)
- 抗温抗盐水基钻井液降滤失剂研究进展(第二部分)
- 抗温抗盐水基钻井液降滤失剂研究进展(第三部分)
- 超高温高密度钻井液
- 浅析减阻剂在输油管道运行中的节能降耗和增输效益
- 井控技术研究进展与展望(第三部分)
- 井控技术研究进展与展望(第二部分)
- 井控技术研究进展与展望(第一部分)
- 耐温型聚丙烯酰胺减阻剂研究与应用现状(第一部分)
- 耐温型聚丙烯酰胺减阻剂研究与应用现状(第二部分)
- 抗高温钻井液降滤失剂的合成及机理研究(第一部分)
- 抗高温钻井液降滤失剂的合成及机理研究(第二部分)
- 抗高温钻井液降滤失剂的合成及机理研究(第三部分)
- 油气管道技术发展现状与展望
- 可降解微交联减阻剂的开发及应用(第一部分)
- 石油管道输送用高效减阻剂超高分子量聚1-辛烯的合成及其结构性能(第三部分)
- 石油管道输送用高效减阻剂超高分子量聚1-辛烯的合成及其结构性能(第二部分)
- 石油管道输送用高效减阻剂超高分子量聚1-辛烯的合成及其结构性能(第一部分)
- 可降解微交联减阻剂的开发及应用(第二部分)
- 泡沫水泥浆固井技术
- 泡沫水泥浆固井技术
- 深井、超深井固井关键工具(三)
- 深井、超深井固井关键技术进展及实践 (一)
- 深井、超深井固井特色水泥浆体系(二)
- 石油支撑剂是什么
- 油田污水处理技术现状及发展趋势
- 液化石油气(LPG)压裂技术及其应用前景
- 液化石油气(LPG)压裂技术及其应用前景
- 乳化原油破乳机理的研究
- 乳化原油破乳机理的研究
- 油田开发过程中厚油层剩余油分布与挖潜技术研究
- 一种低伤害压裂液的性能评价与现场应用
- 油基泥浆含油钻屑处理技术研究
- 钻井完井过程油气储层伤害机理与控制措施
- 浅谈PX 项目与我国石油加工业的可持续发展
- 油气并举在石油开采中的作业分析
- 斯伦贝谢如何强化技术创新
- 页岩油深斜井技术新发展
- 油田注水用杀菌剂在我国的应用及发展
- 油田开发设计方法和老油田开发现状
- 引入新井身结构提高SAGD性能
- 关于油气勘探新技术与应用分析
- 海洋油气钻探及其相关应用技术的发展与展望
- 储层压裂新技术: 液化石油气无水压裂
- “大数据” 助力石油行业更高效
- 一种速溶无残渣纤维素压裂液
- 油田污水回用技术促进企业清洁生产
- 历史悠久且最有效的堵漏剂产品:Diaseal M
- 贝克休斯ClearStar压裂液体系
- EOR三大技术现状与展望
- 页岩油气开发环保新技术 移动式膜分离技术提供高容量水循环利用
- 油田化学剂在油田污水处理中的应用研究
- 三次采油技术进展
- 中东钻井技术新进展
- 页岩气开采新工艺:无水压裂
- 以聚合物为载体的三次采油技术研究
- 深水钻井液关键外加剂优选评价方法
- 合成基钻井液技术应用
针对页岩油水平井套管整形开展了技术调研,改进并研发了系列整形工具,结合室内试验结果完善了施工工艺,并在沧东凹陷页岩油水平井GD1701H井现场试验取得了成功,为下一步连续管扫塞、恢复全井段产能提供了通道。
1. 页岩油水平井套变现状
如果套变点在A靶点附近,体积压裂时无法实施分段下桥塞封堵,发生套管变形后不能改造的井段一般就放弃了施工,投产时井筒不能满足连续管扫塞,造成页岩油井产量低、开发时间短,井控资源量得不到有效利用。
为了降低体积压裂造成的套管变形概率,除了优化压裂工艺外,还采用提高套管钢级、增加壁厚来增强套管抗变形能力,页岩油水平井的套变数量得到了有效控制。但是,页岩油水平井压裂套损机理复杂、影响因素多,套损种类也较多,如丝扣渗漏、套管本体穿孔和套变缩径等,尤以套变缩径占比最大,前2种套损井采用补贴管或膨胀管工艺可以恢复生产,套变缩径处理难度大,行业内尚未有成熟的案例可供借鉴。
2. 常规液压整形技术及其不足
滚珠碎裂变形落井。滚珠设计硬度都比较高,受挤压时易碎裂落井;同时,滚珠槽受到滚珠挤压变形,造成滚珠挤出落井。
工具串受力不均蹩断。胀套工具串总长度达到10~15 m,工具之间为丝扣刚性连接,在液缸下推力作用下,胀管器胀头无法准确找正井眼,工具串轴向和径向受力不均匀,存在蹩断落井的风险。
套管回弹有效期短。锥形胀头最大外径段通过变形点后,变形套管回弹卡住胀管器;更为严重的是,套管经过常规液压整形修复后,短期内回弹恢复原先变形状态,造成生产管柱卡钻,现场已经发生多起类似案例。
3.页岩油水平井液压整形工具
扩张式胀管器。扩张式胀管器如图1所示,胀头由芯轴和扩张牙片组成,芯轴外部和分瓣式扩张牙片内侧设计成6°~8°锥度斜坡。
保径短节。保径短节如图2所示,连接在扩张式胀管器后部,外径和胀管器胀头最大直径保持一致。
柔性短节。柔性短节如图3所示,由柔性钻杆单根丝扣连接而成,单根长度0.15 m,活动关节角度0°~4.5°可调,额定扭矩25 kN·m,抗拉强度1200 kN。
减阻接箍和减阻短节。设计了减阻接箍(见图4)和减阻短节(见图5),分别安装在工具串中和大斜度井段处的管串中。
工具组合。页岩油水平井液压整形井下工具串组合自下而上为:扩张式胀管器+保径短节+(螺旋刮削器)+柔性短节+动力杆+多级液压加力器(增力液缸)+水力锚组+泄压阀+水力锚组+震击器+加速器+18°斜坡钻杆。
4.室内试验
试验器材。试验平台,ϕ139.7 mm ×12.7 mm TP125V级套管,压力机,系列套管液压整形工具。
试验步骤。1)将套管固定在试验台上,用压力机加压,折算外挤力为870 kN,套管内径从118.6 mm变形至47.0 mm,模拟井下变形套管。2)将套管固定在试验台上,试验台推送机顶杆连接扩张式胀管器,模拟井下套管修复过程。
试验结果。室内试验结果表明,页岩油水平井变形套管液压整形技术可行,液压产生的下推力使整形胀管器不断扩径,将套管内壁胀压恢复圆形状态,从而达到修复变形套管的目的。试验结果也表明,施工时需要考虑胀头找正,胀头由小到大分步实施。
5. 现场试验
页岩油水平井变形套管液压整形技术先在庄6-12-10井和西36-4井等2口直井进行了现场试验,均取得了成功。此后,该技术在页岩油水平井GD1701H井进行了现场试验。
通过胀套工具的合理配置和精心施工,经过7趟修复,GD1701H井套管通径从94.75 mm恢复至115.60 mm,恢复率97.45 %,并消除了变形套管的回弹应力。ϕ112.0 mm ×1.20 m通井规顺利通过变形井段至井底桥塞,下ϕ50.8 mm连续油管带+ϕ79.0 mm×4.90 m螺杆钻具+ϕ108.0 mm磨鞋顺利扫塞至井底,半年后停喷带压下泵投产,产液量由修复前的9.6方/天增加至23.2方/天,后期2次检泵维护施工均未发现套变现象,套管修复施工效果较好,满足了地质开发需求。
6. 结论与建议
1)改进并研发了系列井下工具,完善了现场施工工艺,形成了胀头自动找正、套管滚压加固和辅助解卡等技术系列。
2)室内试验表明,页岩油井高钢级套管需要的整形力大,对工具要求高,相对而言更适合使用扩张式胀管器,施工时要保证胀头能自动找正。
3)现场试验表明,页岩油水平井变形套管液压整形技术能够恢复套管内径,避免压裂丢段,满足投产时连续管扫塞恢复底层井段能量的需要。
4)页岩油水平井变形套管液压整形技术要遵循“降低级差、胀滚结合、柔性找正、震击防卡”的技术思路选配井下工具,并根据井下显示和起出工具的磨损程度及时做出调整。
5)建议进一步建立理论模型,准确计算不同钢级变形套管需要的外推力,优化工具数量,缩短工具串长度,进一步提高页岩油水平井变形套管液压整形技术的工艺适应性。