技术分析

技术分析

耐温型聚丙烯酰胺减阻剂研究与应用现状(第二部分)

2.2 疏水单体共聚

2.2 疏水单体共聚
2.2  疏水单体共聚

         AM与疏水单体共聚可制备疏水缔合聚丙烯酰胺(HAPAM),即在PAM分子主链上接枝一定比例的疏水基团,使PAM成为两亲性分子。HAPAM分子链上的疏水基团与水分子间因排斥作用形成分子内或分子间缔合结构。疏水缔合是吸热过程,升温利于分子间的缔合作用,疏水缔合作用提升了HAPAM分子的热稳定性。常用的PAM疏水改性单体为AM衍生物、丙烯酸酯类、苯乙烯及其衍生物、离子型疏水单体。

2.2.1 AM衍生物

       此类HAPAM分子链中的疏水基团通过亚酰胺基与主链相连,亚酰胺基间、亚酰胺基与水分子间均可形成氢键,共聚物水溶性好,易形成分子内缔合,减阻效果可能因分子链蜷缩而下降。最常用的AM衍生物疏水单体为N-烷基丙烯酰胺。McCormick等研究发现N-正癸基丙烯酰胺/AM共聚物溶液的黏度随温度的升高而增加。但亚酰胺基在80 ℃左右即发生水解,造成疏水基团脱落,疏水缔合结构被破坏。

2.2.2 丙烯酸酯类

       此类HAPAM分子链中的疏水基团通过酯基与主链相连,常用的丙烯酸酯类疏水单体为烷基丙烯酸酯、含氟丙烯酸酯等。烷基丙烯酸酯中酯基的水解温度较亚酰胺基更低;含氟丙烯酸酯的热稳定性较好,但高温下也可发生水解造成疏水基团脱离,且成本较高。

2.2.3 苯乙烯及其衍生物

      为解决AM衍生物和丙烯酸酯类的高温水解问题,选用苯乙烯及其衍生物作为疏水单体与AM共聚,共聚物疏水基团与HAPAM分子主链直接相连,易形成分子间缔合,热稳定性好。

2.2.4 离子型疏水单体

        离子型疏水单体同时含有疏水基团和离子基团(阴离子、阳离子),不仅提升了HAPAM在水中的溶解性,且静电排斥作用可抑制分子内缔合,使分子链伸展,增大了流体力学体积。常用的离子型疏水单体为长链季铵盐类单体(如十八烷基二甲基烯丙基氯化铵)。

         HAPAM一般含有多种疏水基团,随疏水基团含量和链长的增加缔合性能提升,但HAPAM的水溶性也随之降低,因此,疏水基团的含量通常小于2%(x),疏水链的碳数通常在6~8之间;分子内缔合不利于分子链伸展,造成减阻效果下降,优选可抑制分子内缔合的疏水单体;随着温度不断升高,分子链和疏水基团的热运动加剧,疏水缔合作用减弱。研究结果表明,疏水改性对PAM减阻剂的耐温能力提升是有限的。

         疏水缔合PAM减阻剂还可提高滑溜水压裂液的携砂能力。深层储层地层闭合应力高,需要注入更高浓度的支撑剂以实现对缝网的有效支撑,通过调节减阻剂的浓度调控压裂液黏度,逐渐形成了变黏减阻剂技术,该技术在保留良好减阻效果的同时,解决了滑溜水压裂液携砂能力差的问题,满足了强加砂压裂的施工需求,降低了压裂液的应用成本。

2.3 无机纳米/PAM复合减阻剂

        无机纳米材料与PAM可通过物理吸附、氢键以及共价键等作用形成性能优良的无机纳米/PAM复合材料,耐温、耐剪切、耐盐等性能均有所提升,已广泛应用于钻井、压裂及提高采收率等方面。

无机纳米/PAM复合减阻剂的合成方法主要有:

       1)共混法。将无机纳米粒子通过机械搅拌等方法均匀分散在PAM中,无机纳米粒子与PAM分子链间以物理吸附、氢键等形式结合,操作简单但纳米粒子易团聚;

       2)共聚法。将无机纳米粒子表面改性,与AM等单体进行接枝共聚,无机纳米粒子与PAM分子链间可形成共价键、离子键等,较共混法进一步提升了PAM的热稳定性。

研究最多的无机纳米材料是纳米SiO2。Cao等对比研究了AM/AMPS共聚物、AM/AMPS/纳米SiO2共聚物以及AM/AMPS/胺基化纳米SiO2共聚物的热稳定性,发现140 ℃水溶液中老化12 h后三者的水解度分别约为50%,40%,25%,流体力学半径分别下降了约50%,25%,5%。实验结果表明,AM/AMPS/胺基化纳米SiO2共聚物分子链的热稳定性最优;AM/AMPS/胺基化纳米SiO2共聚物中的胺基化纳米SiO2与PAM分子链间同时以氢键、离子键和共价键三种形式相连,较AM/AMPS/纳米SiO2共聚物的结构更稳定。但很多无机纳米/PAM复合材料的研究表明,无机纳米粒子的比表面积和强度效应易导致粒子的聚沉,制备过程中需解决此问题,才能得到稳定分散的复合材料,便于工业化应用。

3 耐温型PAM减阻剂的应用现状

         根据外观可将PAM减阻剂分为粉末型、油包水乳液型和水包水乳液型,主要特点见表1

粉末减阻剂的优点在于方便长途运输和长期储存,放置稳定性较乳液减阻剂更佳;乳液减阻剂较粉末减阻剂的溶解速度快,更适用于连续混配压裂作业,甚至可实现免配直混,简化了压裂泵注工艺、降低了施工成本。

        王文哲等合成的AM/SSS共聚物减阻剂在140 ℃的高矿化度水中以170 s-1的剪切速率剪切1 h后黏度达到2.48 MPa·s,0.1%(w)的AM/SSS减阻率可达67.2%。姚奕明等利用AM、丙烯酸(AA)、阳离子单体和P型刚性基团不饱和单体制备了一种耐高温减阻剂,并在丁山构造B重点侧钻水平井进行了应用,地层垂深4 095.46 m,水平段长1 234.00 m,地层温度143 ℃,现场减阻率达78.0%。高清春等合成了AM/NVP/ACMO/AMPS共聚物减阻剂,0.1%(w)的AM/NVP/ACMO/AMPS于140 ℃时减阻率达71.9%,在鹰山组THXX井进行了现场应用,井段深度6 156.05~6 249.00 m,地层温度140 ℃,现场实施效果良好。

       变黏减阻剂已广泛应用于致密页岩油气储层的压裂。Ibrahim等以AM、AA、疏水单体Z为单体,合成了一种可变黏减阻剂FR1,在清水和盐水中的减阻率均高于70%,0.3 %(φ)的FR1黏度可达15 MPa·s。贾金亚等以AM、甲基丙烯酰氧乙基三甲基氯化铵(DMC)、甲基丙烯酰氧乙基十二烷基二甲基溴化铵(MEDDAB)为单体,制备了一种疏水缔合的变黏减阻剂AM/DMC/MEDDAB,0.1%(w)的AM/DMC/MEDDAB黏度达10 MPa·s、减阻率为65.74%。Zhao等提出了一种高黏聚合物减阻剂HVFR,已在加拿大Montney现场应用。与常规滑溜水相比,黏性滑溜水不仅减阻效果好,还具有良好的携砂能力。

        无机纳米/PAM复合减阻剂的研究与应用较AM耐温共聚减阻剂少。余维初等研发了JHFR-2型绿色清洁纳米复合高效液体减阻剂,130 ℃下老化8 h减阻率达70.2%。

        耐温型PAM减阻剂的合成与应用较多,主要方法为引入大侧基、刚性侧基、疏水基团以及与纳米复合相结合,充分利用每种方法的优势,解决耐温能力与减阻效果之间的矛盾,可满足深层页岩气滑溜水压裂的施工需求。

4 结语

        PAM减阻剂是滑溜水压裂液的核心添加剂,PAM分子链在高温条件下易热氧降解而断裂,减阻效果大幅下降。可通过与耐温单体共聚、与疏水单体共聚以及合成无机纳米/PAM复合减阻剂三种方法提高PAM减阻剂的耐温能力。但现场应用时耐温能力仅是减阻剂的重要性能之一,尤其在深层页岩气等储层开发时,还需要开展以下研究。

       滑溜水压裂过程中大量压裂液注入地层,PAM减阻剂是高分子量聚合物,易在岩石表面吸附而堵塞微裂缝和孔喉等,导致单井产能下降。应研发可降解减阻剂,即通过AM与一定条件下(时间、温度等)可降解的单体共聚,合成得到由可降解和不可降解两部分组成的分子链,实现减阻剂在地层自降解,降低减阻剂对地层的伤害程度。

       PAM类减阻剂耐温能力提升的同时,减阻剂分子的柔顺性随之降低,造成减阻效果下降,随着储层温度上升这种矛盾更加凸显。如何解决耐温能力与减阻性能之间的矛盾,将是PAM减阻剂研究的重要方向之一。

       在油气勘探开发过程中,须采取科学有效的环境保护措施,研发减阻剂过程中优选无毒环保的合成原料,优化绿色经济的合成路线和工艺,将减阻剂对环境的不利影响降至最低。